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Abstract
In the paper we discuss local conservation laws with non-vanishing conserved
densities and corresponding boundary conditions for the Davey–Stewartson
equations. Proceeding with an infinite symmetry algebra of the Davey–
Stewartson system we generate a finite number of conserved quantities through
appropriate asymptotic conditions.

PACS numbers: 02.20.Tw, 11.30.−j

1. Introduction

In the present paper we will discuss conservation laws for the system of Davey–Stewartson
(DS) equations corresponding to its infinite classical Lie point symmetry group. The DS system
was originally formulated as equations of evolution of weakly nonlinear water waves in 2+1
dimensions (Davey and Stewartson 1974). It describes the nonlinear (resonant) interaction
between long and short waves in the case of shallow water in 2+1 dimensions (Djordjevic
and Redecopp 1977); see also Benney and Roskes (1969) and Kaup (1993) and a discussion
therein. The DS equations arise in plasma physics and nonlinear optics, e.g. Sulem and Sulem
(1999). The DS system can be considered as a natural two-dimensional generalization of a
nonlinear Schrödinger equation.

Many aspects of the DS equations were extensively studied. It has been shown that
the DS equations can be solved by the inverse scattering method (Anker and Freeman 1978,
Fokas and Ablowitz 1984). A number of soliton-type solutions of the DS equations have been
found (solitons, lump solitons, ripplons, dromions, etc), see e.g. Zakharov and Shabat (1973),
Nakamura (1982), Boiti et al (1988) and Fokas and Santini (1990).

The Lie point symmetry group for the DS equations was calculated in Champagne and
Winternitz (1988) and was shown to correspond to an infinite Lie algebra involving six
arbitrary functions of time. The connection of this infinite-dimensional symmetry algebra
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to gauge transformations of the Schrödinger equation and corresponding infinite number of
conservation laws (continuity equations) were discussed in Omote (1988). The existence of an
infinite number of conservation laws for the DS system was discussed in Kulish and Lipovsky
(1987) and Fokas and Santini (1988a, 1988b). Conservation laws for the quantized DSI system
were studied in Pang and Zhao (1993). Formal series symmetries of the DS equations were
discussed in Lou and Hu (1994).

The goal of the present paper is to find essential conservation laws (Rosenhaus 2003)
for the DS system that are associated with its infinite Lie point symmetry group. Out of
the infinite set we will be looking for those continuity equations that lead to non-vanishing
conserved densities (essential conservation laws). For each essential conservation law of the
DS equations we will identify certain boundary conditions that make possible the existence of
a corresponding conserved quantity. In our derivation we will follow the approach developed
in Rosenhaus (2002).

The relationship between variational symmetries and conservation laws has a long history
and goes back to the classic Noether results (Noether 1918), see also Olver (1986). According
to the second Noether theorem (Noether 1918) infinite variational symmetries with arbitrary
functions of all independent variables do not lead to conservation laws but to a certain relation
between equations of the original differential system. Infinite variational symmetries with
arbitrary functions of not all independent variables were shown to lead to a finite number
of essential local conservation laws (Rosenhaus 2002). For infinite symmetries containing
arbitrary functions of t, it was shown in Rosenhaus (2002) that the main factor determining
the existence of corresponding conservation laws is the form of boundary conditions, see also
Rosenhaus (2003, 2005, 2006).

2. Infinite symmetries and essential conservation laws

By a conservation law for a differential system

ωa(x, u, ui, . . .) = 0, i = 1, . . . , m + 1, a = 1, . . . , n, ua
i ≡ ∂ua/∂xi

is meant a continuity equation

DiKi
.= 0, Ki = Ki(x, u, uj . . .), i, j = 1, . . . , m + 1, xi = (x1, x2, . . . , xm, t)

(Ki are smooth functions), which is satisfied for any solutions of the original system (Olver
1986). Each conservation law is defined up to an equivalence transformation Ki → Ki + Pi ,
where DiPi

.= 0. Two conservation laws belong to the same equivalence class if they differ
by a trivial conservation law. For trivial conservation laws the components of the vector Ki

vanish on the solutions: Ki
.= 0 (i = 1, . . . , m+1) or the continuity equation is satisfied in the

whole space: DiKi = 0 (Olver 1986). By an essential conservation law (Rosenhaus 2003),
we mean such a non-trivial conservation law DiKi

.= 0, which gives rise to a non-vanishing
conserved density:

Dt

∫
D

Kt dx1 dx2 · · · dxm .= 0, x ∈ D ⊂ Rm+1, Kt
˙�= 0. (1)

We consider the functions u = u(x) defined on a region D of (m + 1)-dimensional spacetime.
Let

S =
∫

D

L
(
xi, ua, ua

i , . . .
)

dm+1x a = 1, . . . , n, i, j = 1, . . . , m + 1

be the action functional, where L is the Lagrangian density. The equations of motion are

Ea(L) ≡ ωa(x, u, ui, uij , . . .) = 0, a = 1, . . . , n, i, j = 1, . . . , m + 1, (2)
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where E is the Euler–Lagrange operator:

Ea = ∂

∂ua
−

∑
i

Di

∂

∂ua
i

+
∑
i�j

DiDj

∂

∂ua
ij

+ · · · . (3)

Consider an infinitesimal transformation with the canonical operator:

Xα = αa ∂

∂ua
+ (Diα

a)
∂

∂ua
i

+
∑
i�j

(DiDjα
a)

∂

∂ua
ij

+ · · · , (4)

αa = αa(x, u, ui, . . .) i, j = 1, . . . , m + 1, a = 1, . . . , n

(summation over repeated indices is assumed). Variation of the functional S under the
transformation with operator Xα is

δS =
∫

D

XαL dm+1x. (5)

Xα is a variational (Noether) symmetry if

XαL = DiMi, Mi = Mi(x, u, ui, . . .), i = 1, . . . , m + 1, (6)

where Mi are smooth functions. In the future we will use the Noether identity (Rosen 1972)
(see also e.g. Ibragimov (1985) or Rosenhaus (2002)):

Xα = αaEa + DiRαi, i = 1, . . . , m + 1, a = 1, . . . , n, (7)

Rαi = αa ∂

∂ua
i

+

⎧⎨
⎩

∑
k�i

(Dkα
a) − αa

∑
k�i

Dk

⎫⎬
⎭ ∂

∂ua
ik

+ · · · . (8)

Applying the Noether identity (7) (with (8)) to L and combining with (6) we obtain

Di(Mi − RαiL) = αaωa, i = 1, . . . , m + 1, a = 1, . . . , n. (9)

Equation (9) applied to the solution manifold (ω = 0,Diω = 0, . . .) leads to a continuity
equation

Di(Mi − RαiL)
.= 0, i = 1, . . . , m + 1. (10)

Thus, any one-parameter variational symmetry transformation α (6) leads to a conservation
law (10) (the first Noether theorem) with the characteristic α. The second Noether theorem
(Noether 1918) deals with a case of an infinite variational symmetry group where the symmetry
vector α is of the form

αa = aap(x) + ba
i Dip(x) + ca

ijDiDjp(x) + · · · , a = 1, . . . , n, (11)

and p(x) is an arbitrary function of all base variables of the space. Unlike with the first Noether
theorem, a consequence of an infinite symmetry (11) of functional S is not a conservation law
but a certain relation between the original differential equations (Noether 1918). A general
situation when p(x) is an arbitrary function of not all base variables was analyzed in Rosenhaus
(2002). For a Noether symmetry transformation Xα we have

δS =
∫

D

δL dm+1x =
∫

D

XαL dm+1x =
∫

D

DiMi dm+1x = 0,

x ∈ D ⊂ Rm+1. (12)

Therefore, the following conditions for Mi (Noether boundary conditions) should hold
(Rosenhaus 2002):

Mi(x, u, . . .)|xi→∂D = 0, ∀i = 1, . . . , m + 1. (13)
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Equations (13) are usually satisfied for a ‘regular’ asymptotic behavior, u, ui → 0 as
x → ±∞, or for periodic solutions. Let us consider now another type of boundary conditions
related to the existence of local conserved quantities. Integrating equation (10) over the space
(x1, x2, . . . , xm) we get∫

dx1 dx2 · · · dxmDt(Mt − RαtL)
.=

∫
dx1 · · · dxm

m∑
i=1

Di(RαiL − Mi). (14)

Applying the Noether boundary condition (13) and requiring the lhs of (14) to vanish on the
solution manifold we obtain the ‘strict’ boundary conditions (Rosenhaus 2002)

Rα1L|x1→∂D = Rα2L|x2→∂D = · · · = RαmL|xm→∂D = 0. (15)

In this paper, we will be mainly interested in symmetries with arbitrary functions of time γ (t).
It is easy to demonstrate that infinite symmetries with arbitrary functions of t can lead only
to a finite number of essential conservation laws for equations with first-order Lagrangian
functions, L = L(u, ux, ut ); for details and a generalization to higher order Lagrangians see
Rosenhaus (2002). Consider the variational symmetry α of the form

αa = aaγ (t) + baγ ′(t) + caγ ′′(t) + · · · + haγ (k)(t), a = 1, . . . , n. (16)

In order for a differential system to possess Noether local conserved quantities, both Noether
(13) and strict boundary conditions (15) have to be satisfied. The corresponding Noether
conservation law can be found in the form

Dt

∫
dx1 dx2 · · · dxm (Mt − RαtL)

.= 0. (17)

Writing Mt as

Mt = Aγ (t) + Bγ ′(t) + Cγ ′′(t) + · · · + Hγ (l)(t), (18)

from (17), we obtain

Dt

∫
dx1 dx2 · · · dxm[γ (t)A1 + γ ′(t)A2 + · · · + γ (l)(t)Al]

.= 0, (19)

where

A1 =
(

A − a
∂L

∂ut

)
, A2 =

(
B − b

∂L

∂ut

)
, . . . , Al =

(
H − h

∂L

∂ut

)
.

Since γ (t) is arbitrary we get∫
dx1 dx2 · · · dxm

(
A − a

∂L

∂ut

)
.=

∫
dx1 dx2 · · · dxm

(
B − b

∂L

∂ut

)
.= · · ·

.=
∫

dx1 dx2 · · · dxm

(
H − h

∂L

∂ut

)
.= 0. (20)

Obviously, equation (20), in general, does not determine a system of conservation laws but
impose additional constraints. Thus, Noether symmetries with arbitrary functions of time
instead of conservation laws lead to a set of additional constraints imposed on the function u
and its derivatives. Therefore, the satisfaction of the strict boundary conditions (15), along
with the Noether boundary conditions (13), becomes critical in the sense of avoiding additional
constraints (20). Correspondingly, we have three possible situations.

(1) Strict boundary conditions (15), along with the Noether boundary conditions (13), can be
satisfied for an arbitrary function γ (t). Then the system (20) instead of conservation laws
provides additional constraints that the function u and its derivatives must satisfy.
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(2) Strict boundary conditions (15) along with the Noether boundary conditions (13), can be
satisfied for some particular functions γ (t). In this case the (finite) symmetry (16) leads
to the Noether conservation law (17) in agreement with the first Noether theorem.

(3) Strict boundary conditions (15) cannot be satisfied for any function γ (t). In this case
a consequence of an infinite symmetry (16) will be that the solutions of the original
differential equation with the boundary conditions (13) and (15) do not exist.

Thus, in order to avoid additional constraints (20) we have to find those particular functions
γ (t) that lead to different boundary conditions than the ones in general case, when the function
γ (t) is arbitrary (Rosenhaus 2002). Each choice of such functions γ (t) gives rise to a respective
conserved quantity.

3. Symmetries and conservation laws for the Davey–Stewartson equations

Let us apply the above approach for finding non-vanishing conserved densities of the DS
equations with boundary conditions at infinity. We study conserved densities of the DS
equations:

iψt + ψxx + εψyy − kψ |ψ |2 − μψφy = 0, (21)

φxx − εφyy + μ(|ψ |2)y = 0,

where ψ = ψ(x, y, t) is a complex-valued function, φ = φ(x, y, t) is a real-valued function,
k, μ are real constants and ε = ±1. The function ψ(x, y, t) is the amplitude of the water wave
and φ(x, y, t) is related to the wave mean velocity potential. The case ε = 1 corresponds
to the DSI equations and ε = −1 leads to the DSII equation, see e.g. Kaup (1993). As
was mentioned above, the DS system can be considered as two-dimensional generalization
of a nonlinear Schrödinger equation for a complex-valued field ψ = ψ(x, y, t) with the self-
interaction |ψ4| and coupling with a scalar field φ(x, y, t). The corresponding Lagrangian
is

L = ih̄

2
(ψ∗ψt − ψ∗

t ψ) − h̄2

2m
(ψ∗

x ψx + ψ∗
y ψy) − 1

2

(
φ2

x − φ2
y

) − k

2
|ψ |4 − μφy |ψ |2.

In terms of real functions u = u(x, y, t), v = v(x, y, t)

ψ = u + iv, ψ∗ = u − iv. (22)

The DS equations (21) have a form

−vt + uxx + εuyy − ku(u2 + v2) − μuφy = 0,

ut + vxx + εvyy − kv(u2 + v2) − μvφy = 0, (23)

φxx − εφyy + μ(u2 + v2)y = 0,

where u, v, φ ⊂ C2. The Lagrangian for the system (23) is (Omote 1988, Leble et al 1992)
(compare with the L above for h̄ = m = 1)

L = vut − uvt − (
u2

x + v2
x + εu2

y + εv2
y

) − 1

2

(
φ2

x − εφ2
y

) − k

2
(u2 + v2)2 − μφy(u

2 + v2).

(24)

The following operators determine the Lie point symmetry group of equations (23) (compare
with Champagne and Winternitz (1988) and Omote (1988) for ε = ±1):

5
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Xg = g
∂

∂x
− x

2
g′

(
v

∂

∂u
− u

∂

∂v

)
− xy

2μ
g′′ ∂

∂φ
,

Xl = l
∂

∂y
− y

2ε
l′

(
v

∂

∂u
− u

∂

∂v

)
− x2 + y2/ε

4μ
l′′

∂

∂φ
,

Xf = f
∂

∂t
+

f ′

2

(
x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
− v

∂

∂v
− φ

∂

∂φ

)
(25)

−f ′′

8
(x2 + y2/ε)

(
v

∂

∂u
− u

∂

∂v

)
− f ′′′

8μ
(x2y + y3/3ε)

∂

∂φ
,

Xh = h

(
v

∂

∂u
− u

∂

∂v

)
+

yh′

μ

∂

∂φ
,

Xα = (xα/μ)
∂

∂φ
, Xβ = (β/μ)

∂

∂φ
,

where g(t), l(t), f (t), h(t), α(t), β(t) are arbitrary smooth functions. Let us analyze the
conserved quantities corresponding to infinite subalgebras of algebra (25). First, we write our
symmetry operators in canonical form. For an operator

X = ξ t ∂

∂t
+ ξx ∂

∂x
+ ξy ∂

∂y
+ · · · + ηa ∂

∂ua
, a = 1, . . . , n, (26)

a corresponding canonical operator takes a form

Xα = X − ξ iDi = αa ∂

∂ua
+ ζ a

i

∂

∂ua
i

+ σa
ij

∂

∂ua
ij

. . . , (27)

where

αa = ηa − ξ iua
i , ζ a

i = Diα
a, σ a

ij = Dijα
a, a = 1, . . . , n. (28)

We will start with the symmetry operator Xg and find corresponding conserved densities
(Rosenhaus 2003, 2005).

4. Essential conservation laws associated with Xg

We have in our case

Xα = αu ∂

∂u
+ αv ∂

∂v
+ αφ ∂

∂φ
+ (Diα

u)
∂

∂ui

+ (Diα
v)

∂

∂vi

+ (Diα
φ)

∂

∂φi

, i = x, y, t. (29)

Using (28), (26) and (16) we see that

ξx = g, ξ t = ξy = 0, ηu = −xg′v/2, ηv = xg′u/2, ηφ = −xyg′′/2μ,

αu = −gux − xg′v/2, αv = −gvx + xg′u/2, αφ = −gφx − xyg′′/2μ. (30)

Calculating XαL we obtain

XαL = Dx(−gL + g′′yφ/2μ) + Dy(−εg′′xφ/2μ). (31)

Thus, Xg is a Noether symmetry operator and using (6) and (18) we can write

XαL = DiMi, Mx = −gL + g′′yφ/2μ, My = −εg′′xφ/2μ, Mt = 0. (32)

The form of Noether and strict boundary conditions depends on the function g(t).

(A) g(t) is arbitrary. Noether boundary conditions (13) for Xα are

L, φ →
x→±∞ 0, φ →

y→±∞ 0, (33)

6
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which can be specified as

u, v, ux, uy, vx, vy, φ, φx, φy →
x→±∞ 0, φ →

y→±∞ 0. (34)

Strict boundary conditions (15) take the form

αuLux
+ αvLvx

+ αφLφx

∣∣
x→±∞ = 0, (35)

αuLuy
+ αvLvy

+ αφLφy

∣∣
y→±∞ = 0,

or

g(2ux
2 + 2vx

2 + φx
2) + g′x(vux − uvx) + g′′xyφx/2μ →

x→±∞ 0,

g(2εuxuy + 2εvxvy − φxφy + μ(u2 + v2)φx)

+ εg′x(vuy − uvy) − g′′xy(εφy/μ − (u2 + v2)/2) →
y→±∞ 0. (36)

Thus, for an arbitrary function g(t) the strict boundary conditions can be specified as

ux, vx, xφx, x(vux − uvx) →
x→±∞ 0,

yu2, yv2, uxuy, vxvy, yφy, (vuy − uvy) →
y→±∞ 0. (37)

The symmetry transformation Xg for arbitrary g(t) leads to a system of additional
constraints (20) instead of conservation laws. In order to avoid restrictions (20), let us
consider some specific forms of g(t) for which we can weaken our boundary conditions
(34) and (37).

(B) g′(t) = 0, g(t) = const. In this case α and Mi simplify to

αu = −ux, αv = −vx, αφ = −φx, Mx = −L, My = Mt = 0. (38)

Noether boundary conditions are

u, v, uvt − vut , ux, uy, vx, vy, φx, φy →
x→±∞ 0. (39)

For strict boundary conditions, in addition to (39) we have

φx →
x→±∞ 0, uxuy, vxvy, φxφy, φx(u

2 + v2) →
y→±∞ 0. (40)

Since the boundary conditions (39) and (40) for this case are less restrictive than
corresponding boundary conditions in the case of an arbitrary function g(t), then
according to (17) a symmetry Xg will lead to the following essential conservation law:

Dt

∫∫
(uvx − vux) dx dy

.= 0, (41)

or

Px =
∫∫

(uvx − vux) dx dy
.= const.

Expression (41) is conservation of the x-component of linear momentum Px of the system
that takes place when boundary conditions (39) and (40) are satisfied,

Px ≡
∫∫

px dx dy, px = uvx − vux.

The corresponding continuity equation has the form

Dx

[
L + 2

(
u2

x + v2
x

)
+ φx

2] + Dy

[
2ε(uxuy + vxvy) − εφxφy + μφx(u

2 + v2)
] −

Dt(vxu − uxv) =̇ 0. (42)

7
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(C) g′′(t) = 0, g′(t) �= 0: g(t) = t. We have

Mx = −tL, My = Mt = 0. (43)

Noether boundary conditions are the same as in case B (39). For strict boundary conditions
in addition to (40) we get

x(uvx − vux) →
x→±∞ 0, uvy − vuy →

y→±∞ 0. (44)

The essential conservation law associated with the boundary conditions (39), (40) and
(44) takes the form

Dt

∫∫
[2t (uvx − vux) − x(u2 + v2)] dx dy

.= 0. (45)

Note that the conservation (45) implies that

Dt

∫∫
x(u2 + v2) dx dy

.= 2Px, (46)

and
∫∫

x(u2 + v2) dx dy
.= const only when Px

.= 0.
(D) g′′(t) �= 0 In this case, Noether and strict boundary conditions have the same form (34)

and (37) as in case A and lead to no essential conservation laws.

5. Essential conservation laws associated with Xl

For a corresponding canonical operator Xα (29) we get

αu = −luy − yl′v/2ε, αv = −lvy + yl′u/2ε, αφ = −lφy − (x2 + y2/ε)l′′/4μ.

(47)

Calculating XαL we obtain

XαL = Dx(xφl′′/2μ) − Dy(lL + yφl′′/2μ). (48)

Thus, Xl is a Noether symmetry operator and using (6) and (17)

XαL = DiMi, Mx = xφl′′/2μ, My = −lL − yφl′′/2μ, Mt = 0. (49)

As in the previous case the form of strict and Noether boundary conditions depends on the
function l(t).

(A) l(t) is arbitrary. From the Noether and strict boundary conditions we get

uvx − vux, uxuy, vxvy, xφ, x2φx →
x→±∞ 0,

yu, yv, ux, uy, vx, vy, uvt − vut , yφ, y2φy φx →
y→±∞ 0. (50)

No local conservation laws are associated with the Noether transformation Xl when l(t)

is arbitrary. Let us consider now some specific forms of the function l(t) for which we
can weaken boundary conditions (50).

(B) l′ = 0, l(t) = 1. We have

αu = −uy, αv = −vy, αφ = −φy, Mx = Mt = 0, My = −L. (51)

The Noether boundary conditions look as follows:

u, v, ux, uy, vx, vy, uvt − vut , φx, φy →
y→±∞ 0. (52)

The strict boundary conditions, in addition to (52), require that

uxuy + vxvy + φxφy/2 →
x→±∞ 0. (53)

8
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Boundary conditions (52) and (53) are softer than those for the case of an arbitrary
function l(t) (50) and according to (17), the symmetry operator Xl leads to the following
conservation law:

Dt

∫∫
(uvy − vuy) dx dy

.= 0. (54)

Expression (54) is a conservation of the y-component of linear momentum of the system
Py with regular boundary conditions (52) and (53).

Py =
∫∫

(uvy − vuy) dx dy
.= const.

(C) l′′ = 0, l′ �= 0 : l(t) = t. We have

My = −tL, Mx = Mt = 0. (55)

The Noether boundary conditions are the same as in case B (52). For strict boundary
conditions in addition to (52) and (53) we get

uvx − vux →
x→±∞ 0, y(uvy − vuy) →

y→±∞ 0. (56)

The essential conservation law associated with the boundary conditions (52), (53) and
(56) takes the form

Dt

∫∫
[2t (uvy − vuy) − y(u2 + v2)] dx dy

.= 0. (57)

From expression (57) we can see that

Dt

∫∫
(y(u2 + v2) dx dy

.= 2Py.

(D) l′′(t) �= 0 In this case, Noether and strict boundary conditions have the same form (50) as
in case A and lead to no essential conservation laws.

6. Essential conservation laws associated with Xf

For Xα in this case we have

αu = f ut + f ′(xux + yuy + u)/2 + f ′′(x2 + y2/ε)v/8,

αv = f ut + f ′(xvx + yvy + v)/2 − f ′′(x2 + y2/ε)u/8, (58)

αφ = f φt + f ′(xφx + yφy + φ)/2 + f ′′′(x2y + y3/3ε)/8μ.

Calculating XαL we obtain

XαL = DiMi, Mx = xLf ′/2 − εxyφf ′′′/4μ,

Mt = f L, My = yLf ′/2 + (εx2 + y2)φf ′′′/8μ.
(59)

As in the previous cases the form of strict and Noether boundary conditions depends on the
function f (t).

(A) f (t) is arbitrary. From the Noether and strict boundary conditions we will get

x2(vxu − uxv), xvtu, xutv, xu2
x, xu2

y, xv2
x, xv2

y, xu4, xv4, xφ, x2φx, xφ2
y

→
x→±∞ 0,

y2(vyu − uyv), yvtu, yutv, yu2
x, yu2

y, yv2
x, yv2

y, yu4, yv4, y2φ, y3φy yφ2
y

→
y→±∞ 0,

f (t)L →
t→±∞ 0, ∀f (t). (60)

No local conservation laws are associated with the Noether transformation Xα with an
arbitrary function f (t). Let us consider some specific forms of f (t) for which we can
weaken boundary conditions (60).

9
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(B) f ′ = 0, f (t) = 1. We have

αu = ut , αv = vt , αφ = φt , Mx = My = 0, Mt = L. (61)

The Noether and strict boundary conditions here look as follows:

uxut + vxvt + φxφt →
x→±∞ 0, uyut + vyvt − φyφt →

y→±∞ 0, L →
t→±∞ 0. (62)

Boundary conditions (62) are considerably softer than in the case of an arbitrary function
f (t) (60) and according to (17), the symmetry operator Xf leads to the following
associated conservation law:

Dt

∫∫ [(
u2

x + v2
x + εu2

y + εv2
y

)
+

φ2
x − εφ2

y

2
+

k

2
(u2 + v2)2 + μφy(u

2 + v2)

]
dx dy

.= 0.

(63)

Integrand in (63) is the density of the Hamiltonian H of the system, and as we can see
energy conservation law (63) of the system requires rather soft boundary conditions (62).

(C) f ′′ = 0, f ′ �= 0 : f (t) = 2t. We have

Mx = xL, My = yl, Mt = 2tL. (64)

The Noether and strict boundary conditions here require that, in addition to (62),

x(vtu − utv), xu2
x, xu2

y, xv2
x, xv2

y, xu4, xv4, xφ2
x, xφ2

y
→

x→±∞ 0,

y(vtu − utv), yu2
x, yu2

y, yv2
x, yv2

y, yu4, yv4, yφ2
x, yφ2

y
→

y→±∞ 0. (65)

The essential conservation law associated with the symmetry operator Xf and boundary
conditions (65) takes the form

Dt

∫∫
[2tH − x(uvx − vux) − y(uvy − vuy)] dx dy

.= 0 (66)

or

Dt

∫∫
[2tH − xpx − ypy] dx dy

.= 0. (67)

It follows from expression (67) that

Dt

∫∫ [
xpx + ypy

]
dx dy

.= 2
∫∫

H dx dy. (68)

(D) f ′′′ = 0, f ′′ �= 0 : f (t) = t2. We have

Mx = xtL, My = ytL, Mt = t2L. (69)

The corresponding essential conserved quantity here is, according to (17),

Dt

∫∫ [
t2H − t (xpx + ypy) + (x2 + y2/ε)(u2 + v2)/4

]
dx dy

.= 0 (70)

(compare with Ozawa (1992)), with the following boundary conditions:

x2(vxu − uxv), xvtu, xutv, xu2
x, xu2

y, xv2
x, xv2

y, xu4, xv4, xφ2
x, xφ2

y
→

x→±∞ 0,

y2(vyu − uyv), yvtu, yutv, yu2
x, yu2

y, yv2
x, yv2

y, yu4, yv4, yφ2
x, yφ2

y
→

y→±∞ 0, (71)

t2L →
t→±∞ 0.

Taking into consideration (68) we obtain

D2
t

∫∫
[(x2 + y2/ε)(u2 + v2)] dx dy

.= 2
∫∫

H dx dy, (72)

see Ablowitz and Segur (1979) and Ghidaglia and Saut (1990).
(E) f ′′′ �= 0. Noether and strict boundary conditions in this case have the same form (60) as

for the general case, and the symmetry Xf leads to no essential conservation laws.

10
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7. Essential conservation laws associated with Xh

We get

αu = hv, αv = −hu, αφ = yh′/μ, (73)

Mx = 0, My = εh′φ/μ, Mt = 0.

The form of strict and Noether boundary conditions depends on the function h(t).

(A) h(t) is arbitrary. The Noether and strict boundary conditions have a form

uvx − vux, φx →
x→±∞ 0, (74)

uvy − vuy, yu2, yv2, φ, yφy →
y→±∞ 0.

No local conservation laws are associated with the Noether transformation Xh when h(t)

is arbitrary.
(B) h′ = 0, h(t) = 1. We have

αu = v, αv = −u, αφ = 0, Mx = My = Mt = 0. (75)

The boundary conditions in this case look as follows:

uvx − vux →
x→±∞ 0, uvy − vuy →

y→±∞ 0. (76)

Boundary conditions (76) are weaker than those in the case of an arbitrary function h(t)

(74) and the symmetry operator Xl leads to the following essential conservation law:

2DxPx + 2DyPy + Dt(u
2 + v2)

.= 0 (77)

or

Dt

∫∫
(u2 + v2) dx dy

.= 0, (78)

showing the conservation of mass (number of particles) of the system (e.g. Ozawa (1992)).
(C) h′ �= 0. Noether and strict boundary conditions are the same as in the case of an arbitrary

function h(t) (74). In this case, our symmetry Xh does not lead to essential conservation
laws.

Infinite symmetries Xα and Xβ do not lead to any essential conservation laws.

8. Essential symmetries

Let us discuss the symmetry transformations that give rise to essential conservation laws.

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = ∂

∂t
,

X4 = t
∂

∂x
− x

2

(
v

∂

∂u
− u

∂

∂v

)
,

X5 = t
∂

∂y
− εy

2

(
v

∂

∂u
− u

∂

∂v

)
,

(79)
X6 = v

∂

∂u
− u

∂

∂v
,

X7 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
− v

∂

∂v
− φ

∂

∂φ
,

X8 = t2 ∂

∂t
+ t

(
x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
− v

∂

∂v
− φ

∂

∂φ

)
− x2 + εy2

4

(
v

∂

∂u
− u

∂

∂v

)
.

11
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We can see that our ‘essential’ symmetry transformations include translations (with generators
X1, X2, X3), extended Galilean transformations (X4 and X5), rotations in u, v space (X6),
dilatation in extended space x, y, t, u, v, φ (X7) and extended projective transformation (X8).
The set of operators X1, X2, . . . , X8 (79) forms an algebra with the following non-vanishing
commutation relations:

[X1, X4] = −X6/2, [X2, X5] = −εX6/2, [X3, X4] = X1,

[X3, X5] = X2, [X1, X7] = X1, [X2, X7] = X2,

[X4, X7] = −X4, [X5, X7] = −X5, [X3, X8] = X7,

[X3, X7] = 2X3, [X3, X8] = X7.

Note that algebra (79) is not a (minimal) set of operators generating algebra (25) (see Ibragimov
(1985)). Out of all operators of an infinite algebra (25), only symmetries (79) lead to nonzero
local conserved quantities. Note also that each essential conservation law determined by
operators (79) corresponds to a specific boundary condition.

9. Conclusions

In the paper we have generated a set of essential conservation laws for the system of Davey–
Stewartson (DS) equations (23), associated with its classical Lie point symmetry group. Out of
infinitely many continuity equations for the DS system corresponding to its infinite symmetry
algebra (containing six arbitrary functions) we identified those that lead to non-vanishing
conserved quantities. Each of eight conserved quantities we obtained ((41), (45), (54), (57),
(63), (66), (70) and (78)) corresponds to a special form of one of the arbitrary functions in
the generators of the symmetry group, that require softer boundary conditions than in the
general case. Thus, each of our essential conservation laws is determined by a specific form
of boundary conditions, and known conservation laws of linear momentum, energy and mass
(41), (54), (63) and (78) correspond to the weakest boundary conditions. Other essential local
conservation laws assume stricter asymptotic behavior.
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